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ABSTRACT 

Let a be an admissible ordinal, and let a* be the El-projectum of a. Call an 
a-r.e, set M maximal if a -  M is unbounded and for every a -  r.e. set A, either 
A (3 (a-M) or (a-A) (3 (a-M) is bounded. Call an ct-r.e, set M a maximal subset 
of a* if a* - -  Mis undounded and for any a-r.e, set A, either A (3 (a* - M) or 
(a* - A) ~ (a* ~ M) is unbounded in a*. Sufficient conditions are given 
both for the existence of maximal sets, and for the existence of maximal subset 
of a*. Necessary conditions for the existence of maximal sets are also given. 

L In particular, if a >= N; 1 then it is shown that maximal sets do not exist. 

0. Introduction 

The study of  recursive functions on the ordinal  numbers  was initiated by 

Takeut i  in the late 1950's. Takeut i ' s  concept  was generalized by several authors  

to that  o f  recursive functions on admissible initial segments ~ o f  the ordinals. An  

intensive study of  the generalized concept  was begun by Sacks in 1964 [6]. 

The present paper is concerned with generalizations o f  Friedberg 's  maximal set 

theorem to recursion theory on various admissible initial segments o f  the ordinals. 

Fr iedberg 's  original theorem states that  there is a recursively enumerable set (of  

natural  numbers)  whose complement  is infinite but which cannot  be split by a 

recursively enumerable set into two infinite parts. Such a set is called a maximal  

recursively enumerable set. Kreisel and Sacks [3.] proved that  there is a metare- 

cursively enumerable set o f  recursive ordinals whose complement  is unbounded  

but  which cannot  be split by a metarecursively enumerable set into two un- 

bounded  parts. (Actually they proved a somewhat  stronger result; see Theorem 2.1 
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below.) Sacks I-6] made the following observation: let �9 be the first uncountable 

cardinal of the constructible universe. Then every unbounded, constructible 

subset of ~ can be split by an ~-recursive set into two unbounded parts. In par- 

ticular, for this ~, maximal o~-recursively enumerable sets do not exist, for any 

reasonable notion of maximality. In what follows, we prove various existence and 

nonexistence theorems for maximal o~-recursively enumerable sets. Our methods 

in the proofs of nonexistence significantly extend those of Sacks. Our most 

quotable result is: if ~ is an uncountable admissible ordinal, then maximal ~. 

recursively enumerable sets do not exist. (See Theorems 3.5 and 4.4 below.) 

The reader will observe that we never settle on a definition of a maximal ~- 

recursively enumerable set. Instead, we make explicit in the statement of each 

theorem the precise notion of maximality being considered. The main existence 

and nonexistence results are in Sections 2 and 3. Various subsidiary questions are 

treated in Sections 4 and 5. The paper ends with a list of open problems in 

Section 6. 

1. Preliminaries 

The reader should not read this section through but rather refer to it as needed. 

We use von Neumann's definition of ordinal. Thus an ordinal is identified with 

the set of all smaller ordinals. Our set-theoretical notation is standard. In particular 

u (union), c3 (intersection), x (Cartesian produc,), "(range) ,-  (set-theoretic 

difference), c. (subset of), ~(element of), and ~ (empty set) have their usual 

meanings. 

As in G6del [1], we define the constructible hierarchy: Mo = {~};  M~+~ 

- - { x  Me lx is first order definable over (Me, e ) allowing parameters from 

Me}; Ma = w {Me < 4} for limit ordinals 2. The constructible universe is 

defined by: L = u {M Ir is an ordinal}. 

Throughout this paper, c~ is a fixed but arbitrary admissible ordinal. Lower case 

Greek letters denote ordinals less than 0~ except for fl which denotes a limit ordinal 

less than or equal to e. A set X _~ fl is said to be unbounded in ~ if u X  = fl; 

otherwise, it is said to be bounded below ~. We sometimes write unbounded for 

unbounded in 0c and bounded for bounded below e. 

A partial function from e into 0~ is said to be ce-recursive if its values can be 

calculated via an equation calculus resembling Kleene's, but allowing infinitary 

bounded quantifications such as (3x < 5)... where ~ < e. (For further detail', see 
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[6].) A subset of a is said to be a-recursive if its characteristic function is ~. 

recursive. A subset of a is said to be a-recursively enumerable (abbreviated 

a-r.e.) if it is the domain or range of an a-recursive partial function. Every a-r.e. 

set can be written as the range of a one-one ~-recursive function whose domain is 

an ordinal less than or equal to a. 

A subset of ~ is said to be a-finite if it is a-recursive and bounded. It can be 

shown that a subset of a is or-finite if and only if it is a member of M~. A basic 

principle of ~-recursion theory is: if f is an a-recursive partial function and 

K ___ dom ( f )  is a-finite, then f " K  is a-finite. 

Following Rogers [5, pp. 301-307], we define the a-arithmetical hierarchy. 

Thus, a relation on ~ is Zo if it is a-recursive, 1-In if its complement is En, and Y'n+ 1 

if it is the projection of a 1-I n relation. In particular, a relation is E1 if and only if it 

is ~-r.e. For  n > 1, it can be shown that a relation is En if and only if it is Z, def- 

inable over (M~, ~ ) allowing parameters from M~, in t . e  sense of L6vy [4]. A 

partial function on ~ is said to be En if its graph is s In particular, a partial 

function is s if and only if it is ct-recursive. 

Warning: the bounded quantifier manipulations of Rogers I-5, p. 311] do not 

generalize to a-recursion theory except in very special circumstances. However 

Jensen [2] has proved the following remarkable theorem. 

THEOREM 1.1 (Jensen). For n > 1, every Y.,, relation on ct can be uniformized, 

by a Z n partial function. 

Following Jensen, we define for n > 1 the En projectum of a to be the least fl 

such that there is a s  partial function with domain a subset of fl and range ~. 

THEOREM 1.2 (Jensen). For n > 1, the E n projectum of  a is equal to the least 

fl such that there is a Z n subset of  fl which is not a-finite. 

The Y-I projectum of  ~ is sometimes denoted ~*. I f  K is an a-finite set, the 

ct-cardinality of K is the least y such that there is an a-finite one-one correspondence 

between K and ~,. An ordinal less than ~ is an a-cardinal if it is equal to its own 

a-cardinality. An a-cardinal y is regular if no ~-finite subset of ~, is unbounded in 

but of order type less than ~,. The following facts are easily verified. 

1. If  ~* is less than a, then ~* is the largest a-cardinal. 

2. Every a-cardinal is either regular or a limit of regular a-cardinals. 

If n > 1 and fl is a limit ordinal less than or equal to a, we define the Z n cofinality 

of fl to be the least ordinal 2 such that there is a Zn function with domain 2 and 
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range unbounded in ft. Thus, for example, the E1 cofinality of ~ is just ~. For  

n >= 2, the E, cofinality of ~* is equal to the E, cofinality of ~. 

The end of a proof  will be indicated by [ ] .  

2. An existence result 

Our first theorem says that maximal ~-r.e. sets exist for a wide class of admis- 

sible ordinals ~. 

THEOREM 2.1. Suppose there is a ~2 funct ion  f with domain 09 and range ~. 

Then  there is an c~-r.e, set M such that ~ - M 

i) is unbounded in ~; 

ii) has order type 09; 

iii) cannot be split by an ct-r.e, set into two infinite parts. 

Our proof follows Kreisel and Sacks' [3.] construction of a maximal meta-r.e. 

set. 

Proof. We adopt an ~-recursive simultaneous enumeration of the ~-r.e. sets. 

Thus (R;] a < e & p < 0~) is an e-recursive double sequence of a-finite sets, 

R~ is nondecreasing as a function of a, and Rp = u {R~I a < e} ranges over the 

e-r.e, sets as p ranges over e. 

Let f ( a ,  n) be an e-recursive function such that f ( n ) =  l i m j ( a ,  n) for each 

finite n .  Such an e-recursive approximation to . f  exists because f is E2. 

We shall define functions v(a, e) (e< 09) and M"  in an ~-recursive manner by 

induction on a. The sequence ( M ' I  a < e)  will be nondecreasing. At the end of 

the construction, we shall put M = U {M" I o-< e} and prove that e - M has the 

desired properties (i)-(iii). 

As a preliminary to stage a of the construction, we put 

If ~> o9, then M <r will be c~-finite. In any case, 0~ - M <" will be unbounded. 

Stage a: For each r /<  ~, we say r/is in the j th  e-state at stage a if r/q~M <" and 

j =  Y~ {2"- ' Iq~R"  s~,,~ & i ~= e}. 

Note that the number of e-states is finite and that each e-state except the 0th is 

0c-finite at stage a. Define v(a, e) ( e<  co) by induction on e as follows. Since 

- M <r is unbounded, there is an e-state which contains an ~/ exceeding every 

member of 
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(*) {v(a, i) 1 i < e} U {f(z, i) [ r < tr & i =< e}. 

Let j(a,  e) be the highest such e-state. Let v(tr, e) be the least ~/which exceeds every 

member of (*) and is in the j(a,  e)th e-state. Define M" by 

M '~= {pig  < v(tr, O) v 3n(v(a,n) < ~ < v (a ,n+  1))}. 

This completes stage a of the construction. 

Note that M<'__q M ~ and that <v(a,n) In < r are the first co members o I 

- M" in increasing order. 

LEMMA. 2.2. For each e, v(e) = lim,v(a, e) exists, i.e. 3~rV'r > a(v(z, e) = v(a, e)) 

PROOF. We argue by induction on e. Suppose that v(i) = lim,v(a, i) exists for 

each i <  e. Let 7 be the least ordinal exceeding every member of 

{v(i)[i < e} ~_,(f(a,i) la < a& i < e}. 

Let a o be such that Vtr >= ao (Vi < e (v(a, i)= v( i ) )&Vi < e ( f (a ,  i) =f(i))) .  Then 

at any stage tr > ao, j(tr, e) is the highest e-state containing an r />  7. Let j be the 

largest member of {j(tr, e) la ____ ao}.:Let 6 be the least t />  7 such that r/is in the 

j th  e-state at some stage tr > %. Let tr 1 > a o be such that 5 is in the j th  e-state at 

stage tr 1. Then j (a l ,  e ) = j  and v(al, e ) =  5. Hence by induction, j ( a , e ) = j  and 

v(a, e) = 5 for all a > al.  

Recall that f ( a ,  e) < v(cr, e) < v(a, e + 1) for all a and e, and that the range o f f  

is unbounded. It follows that ~ - M = {v(e) [e < a~} is unbounded and has order 

type 09. 

LEMMA 2.3. ~ -- M cannot be split by an ~-r.e. set into two unbounded parts.  

PROOF. Suppose not. Let e be the least n such that Rs(,) splits ~ - M into two 

unbounded parts. Then there are c, d, i , j  such that e < c < d, i < j, and v(c) (resp. 

t'(d)) is in the ith (resp. jth) e-state at all sufficiently large stages a. Let a o be such 

that Vtr >__ % Vk < d(v(a, k) = v(k) & f ( a ,  k) = f(k)) .  Let a > ao be such that v(c) 

(resp. v(d)) is in the ith (resp. jth) e-state at stage a. Let i* (resp. ]*) be the c-state 

of v(c) (resp. v(d)) at stage a. Then v(d) exceeds every member of 

{v(a,k) lk  < c} t3 {f(z ,k)[z  =< a &  k < c} 

soj(a,  c) => j* > i*. On the other hand, v(a, c) = v(c) soj(a, c) = i*, a contradiction. 

[] 

The proof of Theorem 2.1 is complete. 
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There are many interesting examples of admissible ordinals ~ satisfying the 

hypothesis of Theorem 2.1. In the first place, the hypothesis is satisfied if a* = o.  

In this case, Theorem 2.1 specializes to the earlier result of Kreisel and Sacks. 

Another class of examples is provided by the following theorem whose proof 

appears in the second author's Ph.D. thesis [7]. 

THEOREM 2.4. Let  F be a E4 sentence of  the ZF language. Suppose ~ is the 

least admissible ordinal such that (M~, E ) satisfies F. 7hen there is a ~2 function 

with domain co and range ~. 

To be specific, consider the following examples. 

1. Let ~ be the least admissible ordinal greater than to such that ~* -- cc 

2. Let ct be the least admissible ordinal such that to < ct* < ~. 

3. Let ~ be the least admissible ordinal greater than to such that (M~, e ) 

satisfies the power set axiom. 

It is easy to construct Y~4 sentences showing that each of these 0ds falls under the 

purview of Theorem 2.4. Hence, for each of these ~'s, maximal 0~-r.e. sets exist by 

Theorem 2.1. 

3. Some nonexistence results 

In this section, we present some theorems to the effect that for certain admissible 

ordinals ~, maximal ~-r.e. sets do not exist. 

LEMMA 3.1. Let 2 be the Y,2 cofinality of  ct. There is a sequence of  sets 

(n~[r  <2> such that 

i) V 4 < r / < 2 ( H r  t ~ H , = ~ ) ;  

ii) ~ =  U(Hr162 <2};  

iii) the sets He, 4 < 2, are simultaneously c~-r.e.; 

iv) Vr/< 2 (LJ {Hr < r/} is a-finite). 

PROOF. If 2 = Ct, the lemma is trivial so assume 2 < c~. Let f be a E2 function 

with domain 2 and range an unbounded subset of cc Let f (a ,  0 be an a-recursive 

function such that for all 4 < 2, f ( O  = limff(a, O, i.e. V4 < 2 3aVz > a(f(z ,  4) 

=f (O ) .  Let us say that f ( O  changes value at stage a if Va '< a3z ( a ' <  z < a& 

f(z, 4) # f ( t r ,  4)). For each z, let n(z) be the least a > z such that somef(O changes 

value at stage a. This n(z) exists since otherwisef(O = f ( z ,  0 for all 4 </1, which 

would imply that f has bounded range. Put z into H, if r/is the least 4 such that 

f ( 0  changes value at stage n(z). Properties (i)-(iii) are obvious. Property (iv) 
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holds because otherwise there would be a Z2 function with domain t/and range 

unbounded in ~. [] 

THEOREM 3.2. Assume that the E z cofinality o f  c~ is less than the Y2 projectum 

of  ~. Then every unbounded IIx set can be split by an ~-recursive set into two 

unbounded parts. 

PROOF. Let 2 and (He I ~ < 2) be as in Lemma 3.1. Let S be an unbounded 17~ 

set. Define a set X _c 2 by putting q e X if and only if 

t / .  n s) ( u  n s I r < .}  7). 

Clearly X is Z2. Since 2 is less than the Y~z projectum, it follows by Theorem 1.2 

that X is e-finite. Also, X is unbounded in 2, since S is unbounded in ~. (Here we 

are using property (iv) in the statement of  Lemma 3.1.) Hence, X can be split 

into two a-finite sets, Xo and Xx, each of which is unbounded in 2. Put 

B o = u {H~[~ ~ Xo} and B 1 = t3 {Hr e X , } .  Then B o and B~ are disjoint and 

a-recursive. Furthermore, Bo n S and B1 n S are unbounded. Thus Bo splits S 

into two unbounded parts. [] 

As an example of an interesting admissible ordinal to which Theorem 3.2. 

L the co th infinite cardinal of the constructible universe. applies, we may take ~=~oo,, 

The function Qo L I n < ~o) is then ~2 so a is E2 cofinal with oJ. On the other hand, 

as a cardinal of L, a is clearly equal to its own E2 projectum. Thus, for this ~, 

there are no maximal a-r.e, sets. 

Let B be an ~-r.e. set. Write B =  U{B~]t~ <~} where (B~[~ < ~ )  is an ~- 

recursive nondecreasing sequence of a-finite sets. Let 7 < a be fixed. Clearly the 

order type of  7 - B~ is nonincreasing, hence eventually constant, as a function of  

a. The following simple observation requires proof. 

LEMMA 3.3. For each 7 < ~ there is a such that ~ - B ~ has the same order 

type as 7 - B .  

PROOF. Consider the least 7 for which the lemma fails. It is easy to see that 7 

is a limit ordinal and that 7 - B is unbounded in 7. Let 0 be the order type of  

7 - B. For each a, let f ( a )  be the supremum of the first 0 elements of ~ - BL 

Clearly, f :  ~ ~ 7 is ~-recursive and nondecreasing. Furthermore, 7 = lim f i n  the 

weak sense that 

V},' < ~,3o-'Va > a' (f(o-) >= 7'). 
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Now for each v < V, let g(v) be the least cr such that f (o )  > v Then 9 : V ~ ~ is 

~-recursive and unbounded. This contradicts the admissibility of ~. [] 

THEOREM 3.4. Let S be an unbounded H I set which cannot be split by a 171 

set into two unbounded parts. Let ~ be a limit ordinal such that every final 

segment of  S has order type greater than lt. Then there is a E3 function f : ~ ~ 

such that {~ </~ [f(~) < 7} is finite for all 7 < ~. 

PROOF. Write c ~ - S = M = U { M ~  where (M~Ia  < ~ ) i s  an ~- 

recursive nondecreasing sequence of a-finite sets. For each ~ < / t ,  put 

Ar = {7 [ 3o-3r/(~ - M ~ has order type #. r /+  ~)}. 

Then A~ is ~-r.e. and by Lemma 3.3, S n Ae is unbounded. Hence S -  Ar is 

bounded. The relation S - Ar ___ 7 is clearly 1112. Hence by Jensen's Uniformization 

Theorem 1.1, there is a •3 function f :  # ~  ~ such that S -  Ae ___f(~) for each 

< # .  But for each 7 < ~ , { o r d e r  type of y - M ~ [ a < ~ }  is finite. Hence 

{4 < # I f ( l )  < Y} is finite. [] 

COROLLARY. Suppose there is an unbounded 171 set which eannot be split by a 

171 set into two unbounded parts. Then ~ is Z s cofinal with o9. 

PROOF. Let S be such a 1111 set. If  S has a final segment of order type o9, then 

in fact 0c is Z2 cofinal with co. If not, apply Theorem 3.4 with kt -- co to show that 

is '~3 cofinal with co. [] 

Our next theorem says that maximal ~-r.e. sets do not exist for uncountable 

admissible ordinals c~. 

THEOREM 3.5. Assume ~ is greater than or equal to o9~, the first uncountable 

cardinal of  the constructible universe. Then every unbounded H a set can be 

split by a 171 set into two unbounded parts. 

PRoov. Suppose for contradiction that ~ > o9~ and S is an unbounded I-Ix set 

which cannot be split by a / Ix  set into two unbounded parts. 

Case 1. S has a final segment of order type less than o9~. Then the Z2 cofinality 

of ~ is less than co~ (in fact it is co) which in turn is less than or equal to the Z2 

projectum of ~. Hence Theorem 3.2 provides a contradiction. 

Case II. S has a final segment of order type co~ This contradicts the corollary 

to Theorem 3.4. 

Case I l L  Not Case I or II. By Theorem 3.4 with # = co~, we obtain a Z~ 
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function f :  0 9 ~ a  such that {4 < 09~lf(O < Y} is finite for each y < a. Hence 

09~ is constructibly countable, a contradiction. D 

The hypothesis ~ > 09~ in Theorem 3.5 is much stronger than necessary. It 

could, for example, be replaced by the weaker hypothesis that ~ is uncountable 

in M,+ where ~+ is the next admissible ordinal after ~. This is because Theorem 

3.5, and indeed all the results in this paper, can be proved in Kripke-Platek set 

theory. The question of how much farther the hypothesis of  Theorem 3.5 can be 

weakened, will be answered completely in a future paper (see footnote in Section 6)" 

4. Maximal subsets of ~* 

In [3], Kreisel and Sacks considered maximal H i  subsets of 09. This suggests 

that we no,v study maximal e-r.e, subset~ of  ~* in case ~* < e. The only known 

existence result here is the following, due essentially to Kreisel and Sacks [3]: 

THEOREM 4.1. Jf  ~* = 09, then there is an ~-r.e. subset o f  ~o, M, such that 

09 - M is infinite but cannot be split by an ~-r.e. set into two infinite parts. 

PROOF. Since ~* = 09, there is an a-recursive partial tunction p with domain a 

subset of  ~o and range ~. Let A(a,i) be an ~-recursive predicate such that p(i) is 

defined if and only if (3r i). Define 

p~, = (i) C3 09 if (qz < e)A(~, i); 

otherwise. 

Thus (P~' la < ~ & i < 09) is an e-recursive double sequence of e-finite subsets of 

09; P~' is nondecreasing as a function of a; and P~ = w{P~lcr < a} ranges over 

the e-r.e, subsets of ~0 as i ranges over 09. 

Modify the proof of Theorem 2.1 as follows. For  each n < a~ say n is in the j th  

e-state if n ~ M <~ and j = ~{2~-~[ n ~ P~& i < e}. Replace (*) by {v(o-, i)li < e}. 

(Thus the funct ionfplays no role in the modified construction.) Change Lemma 2.2 

to read: for each e < 09, v(e)= lim, v(a,e) is finite. Change Lemma 2.3 to read: 

09 - M cannot be split by an a-r.e, set into two infinite parts. The proofs of the 

modified lemmas go through virtually unchanged. [ ]  

The following general lemma leads to a nonexistence result for maximal a-r.e 

subsets of a*. 

LEMMA 4.2. Let S be a bounded H~ set o f  order type less than a*. Then S is 

a-finite. 

PROOF. Let S _ 7 < e. Write 7 - S = M = k3{M'ltr < e} where (M~]o " < e )  
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is an ~-recursive nondecreasing sequence of ~-finite sets. By hypothesis, 7 - M has 

order type less than ~*. Hence by Lemma 3.3, there is a a such that v - M  ~ has 

order type less than ct*. Also, 7 - M~ is c~-finite; hence 7 - M" can be put into 

~-finite one-one correspondence with some ordinal less than ~*. Hence any 111 

subset of ~ - M" is ~-finite. In particular, S is ~-finite. [] 

THEOREM 4.3. Suppose ~* is less than ~. Let S be a II I subset of  ~* which is 

unbounded in ~* and cannot be split by a 1I 1 set into two parts each unbounded in 

ct*. Then for  each # < ~*, there is a Y-3 function f :  # ~ ~* such that {~ < u If(C) 
< ~} is f ini tefor  each ~ < o~*. 

PROOf. Obviously S is not ~-finite. Hence by 4.2, S has order type ~*. Hence 

no final segment of S has order type less than ~*. Proceed as in the proof  of Theorem 

3.4. []  

The next theorem says that maximal ~-r.e. subsets of ce* do not exist for un- 

countable admissible ordinals ~. 

THEOREM 4.4. Suppose ~ > ce* > 09~ Then every 1-I1 subset o f  o~* unbounded 

in ~* can be split by a II I set into two parts each unbounded in ct*. 

L L PROOF. If  ~* = o91, apply Theorem 4.3 with # = o9. If  ~* > col, apply Theorem 

4.3 with/~ = o9~. [] 

5. R-maximal sets 

In ordinary recursion theory, an r-maximal set is defined as an r.e. set whose 

complement is infinite but cannot be split by a recursive set into two infinite parts. 

It is known that there exist r-maximal sets which are not maximal. (This result is 

due to A. H. Lachlan and R. W. Robinson, independently. See Rogers I-5. pp. 252- 

3].) This suggests that we try to study r-maximal sets in ~-recursion theory. 

Unfortunately, Theorems 3.4 and 4.3 say nothing about r-maximal sets. It is 

unknown, for instance, whether there is an uncountable admissible ordinal ~ such 

that r-maximal ~-r.e. sets exist. Theorem 3.2 together with the following theorem 

gives some fragmentary information. 

THEOREM 5.1. Assume that ~* is not a limit of  ~-cardinals, and that the Y a 

cofinality o f  ~ is ~*. Then: 

i) every unbounded ~,2 set can be split by an ~t-recursive set into two unbounded 

parts. 
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ii) every E 2 subset of  a* unbounded in & can be split by an a-recursive set 

into two parts each unbounded in a*. 

PROOF. We are assuming that ~* is not a limit of s-cardinals. Let fl be the 

largest a-cardinal less than a*. By Cantor 's  theorem inside M~, there is a one-one 

a-recursive function H from a into the a-finite subsets of ft. 

Let S be an unbounded Z2 set which cannot be split by an a-recursive set into 

two unbounded parts. For  each v < fl, define 

B , =  {a < alv~H~}.  

Then B, is a-recursive. Hence either S n B, or S - B, is bounded. The relation 

S nB~_c y v S -  B, c ? 

is clearly Ha. Hence by Jensen's Theorem 1.1, there is a Y~a function g : fl ~ 

such that 

S n B, =_ g(v) v S - B, =_ g(v) 

for each v < ft. We are assuming that the ~3 cofinality of a is greater than ft. 

Hence g"fl is bounded. Let ?, ~ be elements of S such that g"fl~_ ? < 3. Then 

H~ = H~. This contradicts the fact that H is one-one. 

We have just proved (i). The proof of (ii) is similar, noting that a* is equal to 

its own E3 cofinality. [] 

6. Open questions 

We list some open questions which have been partially answered by the results 

of  the present paper. 

1. For  which admissible ordinals ~ does there exist an unbounded l i  t set 

which cannot be split by a H1 set into two unbounded parts? t 

2. For  which admissible ordinals a does there exist an unbounded 171 or E2 set 

which cannot be split by an a-recursive set into two unbounded parts ? 

3. There are similar questions for subsets of a*. In particular, are there an 

admissible ordinal �9 such that m < a* < a and a H1 subset of a* unbounded in a* 

which cannot be split by a 1-I1 set into two parts each unbounded in a*? 

We say that a set C ~ a is cohesive if C is unbounded but cannot be split by a 

t The first author has recently studied various definitions of maximality and has obtained a 
necessary and sufficient condition for the existence of a maximal a-r.e, set for each such definition. 
The results will appear in a paper entitled "Maximal a-r.e, sets" and will provide an answer to 
Question 1. 
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1-11 set into two unbounded parts. It  follows from the proofs of  Theorem 3.2 and 

5.1 that if V = L a n d  ~ is either a successor cardinal or a limit cardinal with E2 

cofinality < ~, then cohesive subsets of  ~ do not exist. The standard construction 

of a cohesive subset of  o9 (see I5, pp. 231-232]) generalizes to show that if  ~ is a 

weakly compact cardinal of  L, then ~ has a cohesive subset. (We originally noted 

this for ~ measurable, and E. Fisher observed that weak compactness in L 

suffices.) 
4. Which admissible ordinals have cohesive subsets? In particular, can it be 

proved in Z F  that there is a c a r d i n a l ,  of  L such that ~ > to a n d ,  has a cohesive 

subset ? t 
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t R. Shore has recently answered the last part of Question 4 in the affirmative. 


